Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The loss of phosphorous (P) from the land to aquatic systems has polluted waters and threatened food production worldwide. Systematic trend analysis of P, a nonrenewable resource, has been challenging, primarily due to sparse and inconsistent historical data. Here, we leveraged intensive hydrometeorological data and the recent renaissance of deep learning approaches to fill data gaps and reconstruct temporal trends. We trained a multitask long short-term memory model for total P (TP) using data from 430 rivers across the contiguous United States (CONUS). Trend analysis of reconstructed daily records (1980–2019) shows widespread decline in concentrations, with declining, increasing, and insignificantly changing trends in 60%, 28%, and 12% of the rivers, respectively. Concentrations in urban rivers have declined the most despite rising urban population in the past decades; concentrations in agricultural rivers however have mostly increased, suggesting not-as-effective controls of nonpoint sources in agriculture lands compared to point sources in cities. TP loss, calculated as fluxes by multiplying concentration and discharge, however exhibited an overall increasing rate of 6.5% per decade at the CONUS scale over the past 40 y, largely due to increasing river discharge. Results highlight the challenge of reducing TP loss that is complicated by changing river discharge in a warming climate.more » « lessFree, publicly-accessible full text available November 26, 2025
-
Stakeholder participation in social-ecological systems (SES) modeling is increasingly considered a desirable way to elicit diverse sources of knowledge about SES behavior and to promote inclusive decision-making in SES. Understanding how participatory modeling processes function in the context of long-term adaptive management of SES may allow for better design of participatory processes to achieve the intended outcomes of inclusionary knowledge, representativeness, and social learning, while avoiding unintended outcomes. Long-term adaptive management contexts often include political influences -- attempts to shift or preserve power structures and authority, and efforts to represent the political and economic interests of stakeholders -- in the computer models that are used to shape policy making and implementation. In this research, we examine a period that included a major transition in the watershed model used for management of the Chesapeake Bay in the United States. The Chesapeake Bay watershed model has been in development since the 1980s, and is considered by many to be an exemplary case of participatory modeling. We use documentary analysis and interviews with participants involved in the model application and development transition to reveal a variety of ways in which participatory modeling may be subject to different kinds of political influences, some of which resulted in unintended outcomes, including: perceptions of difficulty updating the model in substantive ways, “gaming” of the model/participatory process by stakeholders, and increasing resistance against considering uncertainty in the system not captured by the model. This research suggests unintended or negative outcomes may be associated with both participatory decision-making and stakeholder learning even though they are so often touted as the benefits of participatory modeling. We end with a hypothesis that further development of a theory of computer model governance to bridge model impact and broader theories of environmental governance at the science-policy interface may result in improved SES modeling outcomes.more » « less
An official website of the United States government
